



# **Applications**

PE pressure pipes

## Large polyethylene pipes

## Krah pipes for pressure application

Krah-Pipes are large polyolefin pipes up to an internal diameter of 4000mm and a maximum solid wall thickness of 200mm. The preferred jointing technology is the butt-fusion technology, however for low pressure rates the integrated electro fusion technology is also acceptable. Nearly any internal and external diameter within the upper mentioned range can be produced, using the Krah-Spiral-Cross-Winding-Extrusion-Pro-cess.

Thanks to the unique pipe production machine developed by Krah, even the biggest pipe diameters can be produced on very little space (30m x 30m). Therefore a most efficient use of this production machine on site is possible.

### **Production process**

Krah-Pipes are produced according to the Krah-Spiral-Cross-Winding-Extrusion-Process. During the production process the pipe is produced seamless and all sub-processes are continuously controlled by the integrated CPV and control visualizing software.

The first layer is produced on a heated calibration mandrel, the next layers are produced cross-over accordingly on top of the previous layers. The previous layers are heated by an IR-Heating system to provide a surface temperature between 170°C and 200°C.

With the help of the co-extruder the inner surface can be produced with an inspection friendly, coloured polyolefin material. The orientation of the molecules is in radial direction, which has a positive

effect on the internal pressure. Another important quality advantage is, that due to the slow cooling down process no frozen stresses will occur in the pipe wall.

#### **Material**

The base material, high density polyethylene (PE80, with a minimum MRS of 8.0 N/mm² or PE100, with a minimum MRS of 10.0 N/mm²), is normally stabilized by the addition of carbon black. On special request and for special applications other polyolefin can be used, like for example polypropylene grades.

#### Pipe ends

The pipe ends are cut in-line, in 90° angle to the pipe axis.

Should Electro fusion joints or stubends be produced, the pipe ends are produced accordingly with socket and spigot.

#### **Surfaces**

The internal and external pipe surface is smooth. Slight corrugation (especially on the outer surface), which necessarily involves variations in the wall thickness, is ac ceptable providing that the thickness of the pipe wall is at no point less than its given nominal value.

The inner surface can be produced of electro conductive or inspection-friendly coloured material.

## **Dimensions**

All dimensions are related to the reference temperature of  $\pm 23/-2$ °C.



Sketch of a pipe



Overview of the production process



Production of the "next" layer



In-line cutting-unit

## **Nominal diameters**

The nominal diameter (DN) is related to the internal diameter (ID) regardless of the pressure rate. The hydraulic radius is the same for each nominal diameter.



Krah-Pipe DN/OD 1800mm SDR9

## Large polyethylene pipes

| DN/ID   | DN/OD range    |
|---------|----------------|
| 300 mm  | 310 - 460 mm   |
| 400 mm  | 410 – 560 mm   |
| 500 mm  | 510 – 660 mm   |
| 600 mm  | 610 – 760 mm   |
| 800 mm  | 810 – 960 mm   |
| 1000 mm | 1010 – 1160 mm |
| 1200 mm | 1210 – 1360 mm |
| 1400 mm | 1410 – 1560 mm |
| 1600 mm | 1610 – 1760 mm |
| 1800 mm | 1810 – 1960 mm |
| 2000 mm | 2010 – 2160 mm |
| 2200 mm | 2210 – 2360 mm |
| 2400 mm | 2410 – 2560 mm |
| 3000 mm | 3010 – 3160 mm |

Standard nominal diameter, other dimensions on request

Higher wallthicknesses (s > 80 mm) can be realised in several production steps.

| Tolerances for diameters |          |  |
|--------------------------|----------|--|
| DN/ID ≤ 700 mm           | + 3.0 mm |  |
| 800 mm < DN/ID ≤ 1000 mm | + 5.0 mm |  |
| DN/ID > 1000             | + 6.0 mm |  |
| DN/ID > 1600             | + 8.0 mm |  |

Other dimensions on request

## Wall thickness

The wall thickness (s) is half of the difference between the internal diameter and the external diameter.

$$s = \frac{DN/OD - DN/ID}{2} [mm]$$

The pipes shall be free of blisters, shrink holes and inhomogenities which might impair their performance in service.

### **Pipe length**

The standard pipe length is 6m (+/- 10mm). If required, shorter pipe lengths are possible. The shortest length is 1m.



## **Pipe length**

The Standard Dimesion Ratio is the difference between the external diameter DN/ OD and the wall thickness (s).

For DN/OD pipes:

$$SDR = \frac{DN / OD}{s}$$

For DN/OD pipes:

$$SDR = \frac{DN / ID + 2s}{s}$$

### **Pipe marking**

Generally the pipes have to be marked according to DIN 8074 No.8. The minimum marking should indicate:

- · Manufacturer Code, e.g. KRAH
- · If available, third-party control marks
- Material Code, e.g. PE100
- · DIN-Number, e.g. DIN16961
- External diameter, e.g. DN/OD 1200 or internal diameter, e.g. DN/ID 1200
- · Wall thickness, e.g. 30 mm
- Melt Flow Rate, e.g. MFR005
- Standard Dimension Ratio, e.g. SDR11
- Date of Manufacturing, e.g. 20030824
- Machine No., e.g. no. 7/KR600

The marking should be clear and should be placed outside of the pipe in radial direction, at least once per 1 m pipe length.

## Low pressure and high stiffness

In some applications wall thickness for low pressure is not stiff enough to be buried. Usually pipes with thicker solid wall have to be empolyed. Krah technology proposes another solution - a PR profile can be added to the pipe wall. This keeps the low pressure pipe properties and adds more stiffness that makes it possible to install the low pressure pipe underground.

Acc. to DIN 8074, the following hoop stress formula is used:



Inspection friendly inside surface



Butt-fusion of a Krah-Pipe DN/OD 1600mm SDR17



Electro fusion socket



Different co-extruded inside color: yellow, blue and electro conductive

## Large polyethylene pipes

$$\sigma_{h} = \frac{p (d_{s} - s_{min})}{2s_{min}}$$

with:

 $s_{min}$  = minimum wall thickness [mm]

d<sub>s</sub> = minimum outside diameter [mm]

 $\sigma_{h}$  = hoop stress [MPA]

p = pressure [MPA]

The hoop stress is related to the MRS value of the used material. The safety factor c is usually 1,25 for water applications. In DIN 16961 (Thermoplastics pipes and fittings with profiled outer and smooth inner surface) the same basic formulae can be used and rewritten as:

$$\sigma_{h} = \frac{p (d_{s} - s_{min})}{2s_{min}} = \frac{p (d_{i} + 2s_{min} - s_{min})}{2s_{min}} = \frac{p (d_{i} + s_{min})}{2s_{min}}$$

with:

 $d_s = di + 2 smin [mm]$ 

d; = internal diameter [mm]

 $s_{\min} = minimum solid wall thickness$ 

(waterway) [mm]

According to the Krah Production Technology pipes can be produced with a structured / profiled wall (Type PR).



Sketch of a PR profile

The  $s_{\min}$  in above mentioned formula is for type PR the minimum thickness ( $s_1$ ) smooth / solid inner surface (waterway wall thickness, between the profiles).

#### **Jointing**

For the jointing of the pipes the Butt-Fusion technology according to DVS 2207 is recommended.

However for low pressure applications the integrated electro fusion joint can be used. Also the flange connection, where the stub ends are integrated in the pipes, is applicable.

### **Quality control**

The quality control requirements and tests are according to DIN 8075, or other international standards. Individual requirements specified in this standard may be omitted or supplemented in technical delivery conditions relating to particular applications.

#### **Fittings**

All kinds of fittings can be manufactured out of pipe segments. The preferred jointing procedure is butt welding.

## **Relevant standards**

DIN 323: Preferred numbers and series of

preferred numbers; basic values, calculated values, rounded values

DIN 8074: Polyethylene (PE) pipes PE63, PE80,

PE100, PE-HD

DIN 8075: (at present at the stage of draft)

High-density polyethylen (HDPE)

pipes; dimensions

DIN 50011: Testing of materials, components

and equipment; ovens; concepts,

requirements

DIN 16776: Plastic moulding materials; poly-

ethylene (PE) moulding materials;

classification and designation

DIN 50049: Materials testing certificates

DIN 53759: Testing of plastic articles; longterm

internal pressure testing of hollow

bodies

ISO 161: Thermoplastics pipe for the trans-

port of fluids – Nominal outside

diameters and nominal pressures

ISO 4065: Thermoplastics pipes - Universal

all thickness table

DIN 16961: Thermoplastics pipes and fittings

with profiled outer and smooth inner

surfaces

EN 13476: Plastics piping systems for non-

pressure underground drainage and sewerage - Structured-wall piping systems of unplasticized poly (vinyl chloride) (PVC-U). polypropylene

(PP) and polyethylene (PE)

SR04B023: Krah-Pipes in relation to internal

pressure



Large solid wall pipe



Outfall pipeline DN/ID 1800mm



Complicated bend



Heavy wall pipes DN/ID 500mm, s = 140mm

